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ABSTRACT. Kadec and Pelczýnski have shown that every non-reflexive subspace of L1(µ) contains a copy of

l1 complemented in L1(µ). On the other hand Rosenthal investigated the structure of reflexive subspaces of L1(µ)

and proved that such subspaces, have non-trivial type. We show the same facts to hold true, for a special class of

non-reflexive Orlicz spaces. In particular we show that if F is an N-function in ∆2 with its complement G satisfying

limt→∞
G(ct)
G(t)

=∞ then every non-reflexive subspace of L∗F , contains a copy of l1 complemented in L∗F . Furthermore

we establish the fact that if F is an N-function in ∆2 with its complement G satisfying limt→∞
G(ct)
G(t)

=∞ then every

reflexive subspace of L∗F has non trivial type.
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1 Introduction and Background

Kadec and Pelczýnski in [4] have shown that every non-reflexive subspace of L1(µ) contains a copy of l1

complemented in L1(µ). On the other hand Rosenthal in [12] investigated the structure of reflexive subspaces

of L1(µ) and proved that such subspaces, have non-trivial type.

In this paper we will establish similar results for a special class of non-reflexive Orlicz spaces. In particular,

in Section 2 we show that if F is an N-function in ∆2 with its complement G satisfying limt→∞
G(ct)
G(t) =

∞ then every non-reflexive subspace of L∗F , contains a copy of l1 complemented in L∗F (Theorem 2.4).

Furthermore we show that if F is an N-function in ∆2 with its complement G satisfying limt→∞
G(ct)
G(t) = ∞

then every reflexive subspace of L∗F has non trivial type (Theorem 2.7).

1.1 N-Functions and Orlicz Spaces

We begin with recalling some basic facts about N-functions and Orlicz Spaces. For a detailed account of these

facts, the reader could consult chapters one and two in [5]. Throughout this paper µ denotes a probability.

Definition 1.1 Let p : [0,∞) → [0,∞) be a right continuous, monotone increasing function with

1. p(0) = 0;

2. limt→∞ p(t) = ∞;

3. p(t) > 0 whenever t > 0;

then the function defined by

F (x) =
∫ |x|

0

p(t)dt

is called an N-function.

The following proposition gives an alternative view of N-functions.

Proposition 1.1 The function F is an N -function if and only if F is continuous, even and convex with

1. limx→0
F (x)

x = 0;

2. limx→∞
F (x)

x = ∞;

3. F (x) > 0 if x > 0.
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Definition 1.2 For an N-function F define

G(x) = sup{t|x| − F (t) : t ≥ 0} .

Then G is an N -function and it is called the complement of F .

Observe that F is the complement of its complement G.

Definition 1.3 An N -function F is said to satisfy the ∆2 condition (F ∈ ∆2) if

lim supx→∞
F (2x)
F (x) < ∞. That is, there is a K > 0 so that F (2x) ≤ KF (x) for large values of x.

Given an N-function F , the corresponding space of F-integrable functions is defined as follows.

Definition 1.4 For an N -function F and a measurable f define

F(f) =
∫

F (f)dµ.

Let LF = {f measurable : F(f) < ∞}. If G denotes the complement of F let

L∗F = {f measurable : |
∫

fgdµ| < ∞ ∀g ∈ LG} .

The collection L∗F is then a linear space. For f ∈ L∗F define

‖f‖F = sup{|
∫

fgdµ| : G(g) ≤ 1} .

Then (L∗F , ‖ · ‖F ) is a Banach space, called an Orlicz space. Moreover, letting ‖ · ‖(F ) be the Minkowski

functional associated with the convex set {f ∈ L∗F : F(f) ≤ 1}, we have that ‖ · ‖(F ) is an equivalent norm

on L∗F , called the Luxemburg norm. Indeed, ‖f‖(F ) ≤ ‖f‖F ≤ 2‖f‖(F ), for all f ∈ L∗F .

The following theorem establishes the fact that an Orlicz space is a dual space.

Theorem 1.2 Let F be an N-function and let EF be the closure of the bounded functions in L∗F . Then the

conjugate space of (EF , ‖ · ‖(F )) is (L∗G, ‖ · ‖G), where G is the complement of F .

Theorem 1.3 Let F be an N-function and G be its complement. Then the following statements are equiv-

alent:

1. L∗F = EF .
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2. L∗F = LF .

3. The dual of (EF , ‖ · ‖(F ) is (L∗G, ‖ · ‖G).

4. F ∈ ∆2.

Theorem 1.4 (Hölder’s Inequality) For f ∈ L∗F and g ∈ L∗G we have∫
|fg|dµ ≤ ‖f‖F · ‖g‖(G) .

Theorem 1.5 If f ∈ L∗F then

‖f‖F = inf
{

1
k

(1 + F(kf)) : k > 0
}

.

It follows then that f ∈ L∗F if and only if there is c > 0 so that F(cf) < ∞.

Proposition 1.6 If ‖f‖F ≤ 1 then f ∈ LF and F(f) ≤ ‖f‖F .

Recall that a subset K of L1(µ) is called uniformly integrable if given ε > 0 there is a δ > 0 so that

sup
{∫

E
|f |dµ : f ∈ K

}
< ε whenever µ(E) < δ. Alternatively K is bounded and uniformly integrable if and

only if given ε > 0 there is an N > 0 so that

sup

{∫
[ |f |>c ]

| f | dµ : f ∈ K

}
< ε whenever c ≥ N.

The classical theorem of Dunford and Pettis [2, page 93], identifies the bounded, uniformly integrable subsets

of L1(µ) with the relatively weakly compact sets. A concept similar to Uniform Integrability is that of equi-

absolute continuity.

Definition 1.5 We say that a collection K ⊂ L∗F has equi-absolutely continuous norms if

∀ ε > 0 ∃ δ > 0 so that sup{‖χEf‖F : f ∈ K} < ε whenever µ(E) < δ.

For f ∈ L∗F we say that f has absolutely continuous norm if {f} has equi-absolutely continuous norms.

The following result deal with the equi-absolute continuity of the norms.

Theorem 1.7 A function f ∈ L∗F has absolutely continuous norm if and only if f ∈ EF .

The next two results resemble the theorem of Dunford and Pettis. For their proofs the reader should

consult [1], Lemma 2.1 and Corollary 2.9.
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Theorem 1.8 If F ∈ ∆2 and K ⊂ L∗F then the following statements are equivalent:

I) The set K has equi-absolutely continuous norms.

II)The collection {F (f) : f ∈ K} is uniformly integrable in L1.

Theorem 1.9 Let F ∈ ∆2 and suppose that its complement G satisfies

lim
t→∞

G(ct)
G(t)

= ∞ for some c > 0 .

Then a bounded set K ⊂ L∗F is relatively weakly compact if and only if K has equi-absolutely continuous

norms.

1.2 Banach Spaces with Type

Denote by (rn), the sequence of Rademacher functions. Recall that for a positive integer n, rn : [0, 1] →

{−1, 1} is defined by

• rn(1) = −1.

• rn(t) = (−1)(i−1) for t ∈ [ i−1
2n , i

2n ), where i = 1, . . . , 2n.

Definition 1.6 A Banach space X is said to have type p, for some 1 < p ≤ 2, if there is a constant K so

that

(
∫ 1

0

‖
n∑

i=1

ri(t)xi‖pdt)
1
p ≤ K(

n∑
i=1

‖xi‖p)
1
p ,

for any x1, . . . , xn ∈ X.

It turns out that type’s presence in a Banach space, is ultimately connected with the space’s finite

dimensional structure. To be more specific, we need the following notion.

Definition 1.7 Let λ ≥ 1 and X be a Banach space. We say that X contains ln1 ’s λ-uniformly if for each

positive integer n there is an isomorphism T : ln1 → X so that ‖T‖ · ‖T−1‖ ≤ λ.

It is easy to see from the definition above that X contains ln1 ’s λ-uniformly if and only if for each positive

integer n, ∃ x1, . . . , xn ∈ BX such that

‖
n∑

i=1

aixi‖ ≥
1
λ

n∑
i=1

|ai| ,

for all choices of scalars a1, . . . , an.
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Theorem 1.10 (Pisier) The following are equivalent for a Banach space X :

1. For each λ > 1, X does not contain ln1 ’s λ-uniformly.

2. For some λ > 1, X does not contain ln1 ’s λ-uniformly.

3. The space X has type p for some 1 < p ≤ 2.

For a proof of this theorem as well as a more detailed account and bibliography, the reader should consult

[11] and [10, pages 31-40].

2 The Main Results

2.1 Subspaces containing complemented l1

In this section we derive a theorem similar to the one of Kadec and Pelczýnski, about L1 in [4] (see also [2,

pages 94-98]).

Lemma 2.1 Let (fn) be a normalized disjointly supported sequence in L∗F , where F ∈ ∆2 and its complement

G satisfies limx→∞
G(cx)
G(x) = ∞, for some c > 0. Then there is a subsequence (fnk

) of (fn) so that

i. (fnk
) is equivalent to l1’s unit vector basis.

ii. The closed linear span of (fnk
) is complemented in L∗F by means of a projection of norm less than or

equal to 4c.

iii. The coefficient functionals (φk) extend to all of the dual of L∗F and ‖φk‖ ≤ 4 for all positive integers k.

Proof : Let En denote the support of fn. For each positive integer n choose gn ∈ LG with
∫

G(gn)dµ ≤ 1

so that
∫

gnfndµ ≥ 1
2 . There is no harm in assuming that each gn is also supported on En.

Claim that
∫

G(gn/c)dµ → 0 as n → ∞. Fix ε > 0. Since limx→∞
G(cx)
G(x) = ∞ then limx→∞

G(x/c)
G(x) = 0.

So we can choose x0 > 0 so that G(x/c)
G(x) < ε

2 whenever x ≥ x0. Since the En’s are pairwise disjoint and µ is

a probability, we have that µ(En) → 0 as n →∞. So there is a positive integer N so that µ(En) < ε
2G(x0/c)

whenever n ≥ N . So for n ≥ N we have∫
G(gn/c)dµ =

∫
[ |gn|<x0 ]

G(gn/c)dµ +
∫

[ |gn|≥x0 ]

G(gn/c)dµ
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≤ G(x0/c)µ(En) +
ε

2

∫
G(gn)dµ

<
ε

2
+

ε

2
= ε

and so the claim is established.

Now choose a subsequence (nk) of the positive integers so that
∑∞

k=1

∫
G( gnk

c )dµ ≤ 1. For any sequence

of signs σ = (εk) define gσ =
∑∞

k=1 εkgnk
. Since the gnk

’s are disjointly supported, gσ is well defined.

Furthermore ∫
G(

gσ

c
)dµ =

∞∑
k=1

∫
Enk

G(
gσ

c
)dµ

=
∞∑

k=1

∫
Enk

G(
εkgnk

c
)dµ

=
∞∑

k=1

∫
Enk

G(
gnk

c
)dµ

≤ 1 .

So gσ ∈ L∗G. Recall that the norm of gσ in L∗G, is given by ‖gσ‖G = inf{ 1
k (1 +

∫
G(kgσ)dµ) : k > 0} and so

it is easy to see that ‖gσ‖G remains constant as σ varies. Denote this constant by M and observe that

M = ‖gσ‖G ≤ c(1 +
∫

G(
gσ

c
)dµ) = c(1 +

∞∑
k=1

∫
G(

gnk

c
)dµ) ≤ 2c .

Now for (ak) ∈ l1 let σ = (sign(ak)). Then

‖
∞∑

k=1

akfnk
‖F ≥ 1

‖gσ‖G

∫
(gσ

∞∑
k=1

akfnk
)dµ

=
1
M

∫
(
∞∑

k=1

|ak|gnk
fnk

)dµ

=
1
M

∞∑
k=1

|ak|
∫

gnk
fnk

dµ

≥ 1
2M

∞∑
k=1

|ak| .

Hence (i) is established.

Now define for each k, a functional φk on all of L∗F by

φk(f) =
1∫

gnk
fnk

dµ
·
∫

gnk
fdµ
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and define P : L∗F → L∗F by

P (f) =
∞∑

k=1

φk(f)fnk
.

Then for k = 1, 2, . . .

‖φk‖ ≤ 2‖gnk
‖G ≤ 2 · (1 + G(gnk

)) ≤ 4 .

Furthermore P is a projection of L∗F onto the closed linear span of (fnk
) with

‖P‖ = sup
‖f‖F≤1

‖
∞∑

k=1

∫
gnk

fdµ∫
gnk

fnk
dµ

· fnk
‖F

≤ 2 sup
‖f‖F≤1

∞∑
k=1

∫
|gnk

f |dµ

≤ 2 sup
‖f‖F≤1

‖(
∞∑

k=1

|gnk
|)‖G · ‖f‖F

= 2M

≤ 4c.

And so our proof is complete.

We state now the following result in form of a lemma. Its proof can be found in [2, page 50].

Lemma 2.2 Let (zn) be a basic sequence in the Banach space X with coefficient functionals (z∗n). Suppose

that there is a bounded linear projection P : X → X onto the closed linear span [zn] of (zn). If (yn) is any

sequence in X for which
∞∑

n=1

‖P‖ · ‖z∗n‖ · ‖zn − yn‖ < 1,

then (yn) is a basic sequence equivalent to (zn) and the closed linear span [yn] of (yn) is also complemented

in X.

Lemma 2.3 Let (fn) be a sequence in L∗F where F ∈ ∆2 and its complement G satisfies limx→∞
G(cx)
G(x) = ∞

for some c > 0. Suppose that for each ε > 0 there is a positive integer nε so that µ([ |fnε | ≥ ε‖fnε‖F ]) < ε.

Then there is a subsequence (rn) of (fn) so that ( rn

‖rn‖F
) is equivalent to l1’s unit vector basis. Furthermore

the closed linear span [rn] of (rn) is complemented in L∗F .

Proof : First observe that if f ∈ L∗F , E = [ |f | ≥ ε‖f‖F ] and K is the norm of the inclusion map L∗G ↪→ L1

then

‖χE
f

‖f‖F
‖F ≥ ‖ f

‖f‖F
‖F − ‖χEc

f

‖f‖F
‖F
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= 1− 1
‖f‖F

sup{|
∫

gχEcfdµ| : g ∈ LG and G(g) ≤ 1}

≥ 1− 1
‖f‖F

sup{‖g‖1 · ‖χEcf‖∞ : g ∈ LG and G(g) ≤ 1}

≥ 1− K

‖f‖F
‖χEcf‖∞

≥ 1− K

‖f‖F
‖f‖F · ε

= 1−Kε .

So using the hypothesis there is a measurable set E1 and a positive integer n1 so that

µ(E1) <
1

16c · 42K
and ‖χE1

fn1

‖fn1‖F
‖F ≥ 1− 1

16c · 42
.

Since F ∈ ∆2 then each f ∈ L∗F has an absolutely continuous norm. This fact together with the hypothesis

again, yields a measurable E2 and a positive integer n2 > n1 so that

µ(E2) <
1

16c · 43K
,

‖χE2

fn2

‖fn2‖F
‖F > 1− 1

16c · 43

and

‖χE2

fn1

‖fn1‖F
‖F <

1
16c · 43

.

Continue inductively to construct a subsequence (gn) of (fn) and a sequence of measurable sets (En) so that

µ(En) <
1

16c · 4n+1K
,

‖χEn

gn

‖gn‖F
‖F > 1− 1

16c · 4n+1

and
n−1∑
k=1

‖χEn

gk

‖gk‖F
‖F <

1
16c · 4n+1

.

Now let

An = En \
∞⋃

k=n+1

Ek and hn =
gn

‖gn‖F
χAn

.

Then

‖ gn

‖gn‖F
− hn‖F = ‖χAc

n

gn

‖gn‖F
‖F

≤ ‖χEc
n

gn

‖gn‖F
‖F + ‖χEn\An

gn

‖gn‖F
‖F
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≤ 1
16c · 4n+1

+ ‖χ⋃∞
k=n+1

Ek

gn

‖gn‖F
‖F

≤ 1
16c · 4n+1

+ ‖
∞∑

k=n+1

χEk

gn

‖gn‖F
‖F

≤ 1
16c · 4n+1

+
∞∑

k=n+1

‖χEk

gn

‖gn‖F
‖F

≤ 1
16c · 4n+1

+
∞∑

k=n+1

1
16c · 4k+1

<
1

16c · 4n
.

Thus

1 ≥ ‖hn‖F

= ‖χAn

gn

‖gn‖F
‖F

≥ ‖χEn

gn

‖gn‖F
‖F − ‖χ⋃∞

k=n+1
Ek

gn

‖gn‖F
‖F

≥ 1− 1
16c · 4n+1

−
∞∑

k=n+1

‖χEk

gn

‖gn‖F
‖F

≥ 1− 1
16c · 4n+1

−
∞∑

k=n+1

1
16c · 4k+1

> 1− 1
16c · 4n

.

And so

‖ gn

‖gn‖F
− hn

‖hn‖F
‖F ≤ ‖ gn

‖gn‖F
− hn‖F + ‖hn −

hn

‖hn‖F
‖F

≤ 1
16c · 4n

+ (1− ‖hn‖F )

≤ 1
16c · 4n

+ (1− 1 +
1

16c · 4n
)

=
2

16c · 4n
.

By Lemma (2.1), there is a subsequence (nk) of the positive integers so that

• ( hnk

‖hnk
‖F

) is equivalent to l1’s unit vector basis.

• The closed linear span [hnk
] of (hnk

) is complemented in L∗F by means of a projection P , of norm less

than or equal to 4c.

• The coefficient functionals φk extend to all of L∗G with ‖φk‖G ≤ 4 for all k.
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So we have that if rk = gnk
then

∞∑
k=1

‖P‖ · ‖φk‖G · ‖ rk

‖rk‖F
− hnk

‖hnk
‖F
‖F ≤ 16c ·

∞∑
k=1

‖ gnk

‖gnk
‖F

− hnk

‖hnk
‖F
‖F

≤ 16c ·
∞∑

n=1

‖ gn

‖gn‖F
− hn

‖hn‖F
‖F

≤ 16c ·
∞∑

n=1

2
16c · 4n

=
∞∑

n=1

2
4n

< 1 .

Hence the result is established by an appeal to Lemma (2.2).

Theorem 2.4 Let F ∈ ∆2 with its complement G satisfying

lim
x→∞

G(cx)
G(x)

= ∞ for some c > 0.

If X is any non-reflexive subspace of L∗F then X contains an isomorphic copy of l1 that is complemented in

L∗F .

Proof : Since X is not reflexive, then the ball BX of X is not relatively weakly compact. Hence by Theorem

(1.9), BX does not have equi-absolutely continuous norms. So by Theorem (1.8), the set {F (f) : f ∈ BX}

is not uniformly integrable in L1. Thus there is a δ > 0 so that

lim
a→∞

sup{
∫

[ |f |≥a ]

F (f)dµ ; f ∈ BX} = δ .

Keeping in mind that the above limit is actually an infimum we can find an increasing sequence (an) of

positive reals, with an →∞ as n →∞ so that

δ ≤ sup{
∫

[ |f |≥an ]

F (f)dµ ; f ∈ BX} < δ +
1
n

,

for each positive integer n. It follows then, that there is a sequence (fn) in BX so that

δ − 1
n

<

∫
[ |fn|≥an ]

F (fn)dµ < δ +
1
n

for all positive integers n. Now let gn = fnχ[ |fn|≥an ] and hn = fn−gn. Observe that for each ε > 0 we have

µ([ |gn| ≥ ε‖gn‖F ]) ≤ µ([ |gn| > 0 ])
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≤ µ([ |fn| ≥ an ])

≤ 1
an

∫
[ |fn|≥an ]

|fn|dµ

≤ 1
an

∫
[ |fn|≥an ]

F (fn)dµ

≤ 1
an

,

provided that n is large enough. Since 1
an

→ 0 as n →∞ then µ([ |gn| ≥ ε‖gn‖F ]) < ε for even larger n. So

by Lemma (2.3), (gn) has a subsequence that spans a complemented l1 in L∗F .

We now show that (hn) has equi-absolutely continuous norms. Note that if m ≤ n then [ |hm| ≥ an ] = ∅

while if m > n then∫
[ |hm|≥an ]

F (hm)dµ =
∫

[ |fm|<am ]∩[ |fm|≥an ]

F (fm)dµ

=
∫

[ |fm|≥an ]

F (fm)dµ−
∫

[ |fm|≥am ]

F (fm)dµ

≤ sup{
∫

[ |f |≥an ]

F (f)dµ : f ∈ BX} − δ +
1
m

≤ δ +
1
n
− δ +

1
n

=
2
n

.

So for each positive integer n we have

sup
m

∫
[ |hm|≥an ]

F (hm)dµ = sup
m>n

∫
[ |hm|≥an ]

F (hm)dµ ≤ 2
n

.

It follows then that {F (hm) : m ≥ 1} is uniformly integrable in L1 and so by Theorem (1.8), (hn) has

equi-absolutely continuous norms as we claimed. Hence by Theorem (1.9), (hn) is relatively weakly compact

in L∗F . So by passing to appropriate subsequences, we can assume that (gn) spans a complemented l1 in L∗F

and (hn) is weakly convergent in L∗F . Thus (h2n − h2n+1) is weakly null. So by Mazur’s theorem, there is

an increasing sequence (nk) of positive integers and a sequence (ak) of non-negative reals so that

•
∑nk+1

j=nk+1 aj = 1.

• The sequence (wk) defined by wk =
∑nk+1

j=nk+1 aj(h2j − h2j+1) is norm-null in L∗F .

Let

uk =
nk+1∑

j=nk+1

aj(f2j − f2j+1)
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and

vk =
nk+1∑

j=nk+1

aj(g2j − g2j+1) .

Then uk = vk + wk and ‖uk − vk‖F = ‖wk‖F → 0 as k → ∞. By selection, ( gn

‖gn‖F
) was equivalent to l1’s

unit vector basis with complemented span in L∗F . As ‖gn‖F ≥
∫

F (gn)dµ ≥ δ− 1
n , (gn) itself is equivalent to

l1’s unit vector basis. A little thought convinces us that this is also the case with (vk), with the closed linear

span of (vk) still complemented in L∗F of course. By passing to a subsequence to ensure that ‖uk − vk‖F

converges to zero fast enough to apply Lemma (2.2), the result is finished.

2.2 Subspaces of L∗
F that have type

The work of Kadec and Pelczýnski in [4], finds its natural continuation in the work of Rosenthal. In [12],

Rosenthal shows that a subspace of L1 is reflexive if and only if it has non-trivial type. In this section, we

follow his lead, to show that the same fact holds true for the special class of Orlicz spaces, we have been

considering. The following result, mentioned in the form of a lemma, is due to Dor and Kauffman (see [3] ).

Lemma 2.5 Suppose f1, . . . , fn ∈ BL1(µ) satisfy

‖
n∑

i=1

aifi‖1 ≥ θ

n∑
i=1

|ai| .

for any a1, . . . , an, where 0 < θ < 1.

Then there exist pairwise disjoint measurable sets A1, . . . , An such that∫
Ai

|fi|dµ ≥ θ2 .

We now adapt that lemma to our purposes.

Lemma 2.6 Suppose f1, . . . , fn ∈ BL∗
F

(µ) satisfy

‖
n∑

i=1

aifi‖F ≥ θ
n∑

i=1

|ai| ,

for any a1, . . . , an, where 0 < θ < 1. Then there exist pairwise disjoint measurable sets A1, . . . , An such that

‖χAi
fi‖F ≥ θ2 .
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Proof : There is no loss in assuming that ‖
∑n

i=1 aifi‖F > θ
∑n

i=1 |ai|, provided that not all of a1, . . . , an are

zero. Choose now g ∈ BL∗
G
, where G is the complement of F , so that

|
∫

g(
n∑

i=1

aifi)dµ| > θ
n∑

i=1

|ai| .

Then ∫
|

n∑
i=1

ai(gfi)|dµ > θ
n∑

i=1

|ai|

and so by Lemma (2.5) there is a collection of measurable and pairwise disjoint sets A1, . . . , An so that∫
Ai

|gfi|dµ ≥ θ2 ∀i = 1, . . . , n .

By Hölder’s inequality we then have that for each i = 1, . . . , n

‖χAifi‖F ≥ ‖g‖G · ‖χAifi‖F

≥
∫

Ai

|gfi|dµ

≥ θ2 ,

which is what we wanted.

The following theorem, characterizes reflexive subspaces of L∗F , for F ∈ ∆2, with complement G satisfying

limt→∞
G(mt)
G(t) = ∞

Theorem 2.7 Let F ∈ ∆2, with its complement G satisfying

lim
t→∞

G(mt)
G(t)

= ∞

for some m > 0. Let X be a subspace of L∗F . Then the following are equivalent :

1. The space X is not reflexive.

2. The space X contains a copy of l1 complemented in L∗F .

3. The space X contains ln1 ’s uniformly.

4. The space X fails to have non-trivial type.

Proof : The implication “1 ⇒ 2” is just theorem (2.4). As for “2 ⇒ 3” it follows directly from the definitions.

The double implication “3 ⇔ 4” is Pisier’s theorem (Theorem 1.10). So we will only show “3 ⇒ 1”.
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Suppose that X contains ln1 ’s uniformly. Then there is a 0 < θ < 1 so that for each positive integer n,

there are functions f1, . . . , fn ∈ BX satisfying

‖
n∑

i=1

aifi‖F ≥ θ
n∑

i=1

|ai| ,

for any choice of scalars a1, . . . , an. So by Lemma (2.6), we have that for each positive integer n, there are

functions f1, . . . , fn ∈ BX and measurable, pairwise disjoint sets A1, . . . , An so that

‖χAi
fi‖F ≥ θ2 i = 1, . . . , n .

Since A1, . . . , An are pairwise disjoint, at least one of them must have µ-measure less than 1
n . Thus BX

cannot have equi-absolutely continuous norms. Hence by Theorem (1.9), BX is not weakly compact in L∗F

and so X is not reflexive.
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